Exercise 1.2.7

Consider conservation of thermal energy (1.2.4) for any segment of a one-dimensional rod $a \leq x \leq b$. By using the fundamental theorem of calculus,

$$
\frac{\partial}{\partial b} \int_{a}^{b} f(x) d x=f(b)
$$

derive the heat equation (1.2.9).

Solution

Figure 1: This is a schematic of the one-dimensional rod in question.
Equation (1.2.4) in the text is the law of conservation of thermal energy applied to a one-dimensional rod with a heat source $Q(x, t)$.

$$
\begin{equation*}
\frac{d}{d t} \int_{a}^{b} e d x=\phi(a, t)-\phi(b, t)+\int_{a}^{b} Q d x \tag{1.2.4}
\end{equation*}
$$

Bring the derivative inside the integral on the left side and factor a minus sign from the terms containing ϕ.

$$
\int_{a}^{b} \frac{\partial e}{\partial t} d x=-[\phi(b, t)-\phi(a, t)]+\int_{a}^{b} Q d x
$$

The term in square brackets can be written as an integral by another part of the fundamental theorem of calculus.

$$
\int_{a}^{b} \frac{\partial e}{\partial t} d x=-\int_{a}^{b} \frac{\partial \phi}{\partial x} d x+\int_{a}^{b} Q d x
$$

Differentiate both sides with respect to b.

$$
\frac{\partial}{\partial b} \int_{a}^{b} \frac{\partial e}{\partial t} d x=\frac{\partial}{\partial b}\left(-\int_{a}^{b} \frac{\partial \phi}{\partial x} d x+\int_{a}^{b} Q d x\right)
$$

Split up the derivative on the right side into two.

$$
\frac{\partial}{\partial b} \int_{a}^{b} \frac{\partial e}{\partial t} d x=-\frac{\partial}{\partial b} \int_{a}^{b} \frac{\partial \phi}{\partial x} d x+\frac{\partial}{\partial b} \int_{a}^{b} Q d x
$$

Apply the part of the fundamental theorem of calculus in the problem statement three times here.

$$
\begin{equation*}
\frac{\partial e}{\partial t}(b, t)=-\frac{\partial \phi}{\partial b}(b, t)+Q(b, t) \tag{1}
\end{equation*}
$$

The thermal energy in the rod is equal to the mass m times specific heat c times temperature $u(x, t) . e(x, t)$ represents the thermal energy density (thermal energy per unit volume). If we integrate it over the volume between $x=a$ and $x=b$, then we will get the total thermal energy in that region.

$$
\int_{\text {rod }} e(x, t) d V=m c u(x, t)
$$

The right side can be written as a volume integral as well because mass is density times volume. For a nonuniform one-dimensional rod, the specific heat and density vary as a function of x, $c=c(x)$ and $\rho=\rho(x)$, respectively.

$$
\int_{\text {rod }} e(x, t) d V=\int_{\text {rod }} \rho(x) c(x) u(x, t) d V
$$

Assuming that the cross-sectional area A of the rod is constant, the differential of volume is $d V=A d x$.

$$
\int_{a}^{b} e(x, t) A d x=\int_{a}^{b} \rho(x) c(x) u(x, t) A d x
$$

Since the two integrals are equal over the same interval of x, the integrands must be equal.

$$
e(x, t) A=\rho(x) c(x) u(x, t) A
$$

Divide both sides by A to get the formula for $e(x, t)$.

$$
e(x, t)=\rho(x) c(x) u(x, t)
$$

Substitute it into equation (1).

$$
\frac{\partial}{\partial t}[\rho(b) c(b) u(b, t)]=-\frac{\partial \phi}{\partial b}(b, t)+Q(b, t)
$$

$\rho(b)$ and $c(b)$ are constant in time and can be pulled in front of the time derivative.

$$
\rho(b) c(b) \frac{\partial u}{\partial t}=-\frac{\partial \phi}{\partial b}(b, t)+Q(b, t)
$$

According to Fourier's law of heat conduction, the heat flux is proportional to the temperature gradient.

$$
\phi(x, t)=-K_{0}(x) \frac{\partial u}{\partial x},
$$

where $K_{0}(x)$ is a proportionality constant known as the thermal conductivity. It varies as a function of x because the rod is nonuniform. As a result, the energy balance becomes an equation solely for the temperature.

$$
\rho(b) c(b) \frac{\partial u}{\partial t}=-\frac{\partial}{\partial b}\left[-K_{0}(b) \frac{\partial u}{\partial b}\right]+Q(b, t)
$$

Bring the minus sign out of the derivative and change the dummy variable for position from b to x. This gives us equation (1.2.9) in the text.

$$
\begin{equation*}
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q \tag{1.2.9}
\end{equation*}
$$

